Abstract
The principal means for microbial degradation of polychlorinated biphenyls (PCBs) is through the biphenyl pathway. Although molecular aspects of the regulation of the biphenyl pathway have been studied, information on environmental facets such as the effect of alternative carbon sources on (polychlorinated) biphenyl degradation is limited. Here we explore the effect of environmental conditions (e.g., carbon source and growth phase) on the variation in PCB degradation profiles of Burkholderia xenovorans LB400. Genome-wide expression patterns reveal 25 genes commonly up-regulated during PCB degradation and growth on biphenyl to be upregulated in the transition to stationary phase (relative to growth on succinate) including two putative detoxification pathways. Quantitative reverse transcription PCR (Q-RT-PCR) analysis of the upper biphenyl pathway (bphA, bphD, and bphR1), and detoxification genes in response to environmental conditions suggest associated regulation of the biphenyl pathway and chloroacetaldehyde dehydrogenase. The response of genes in the upper biphenyl pathway to carbon source competition and growth phase reveals inhibition of the biphenyl pathway by PCBs. Although PCBs are not degraded during growth on succinate with PCBs, expression data indicate that the biphenyl pathway is induced, suggesting that post-transcriptional regulation or active transport of biphenyl maybe limiting PCB degradation. Identification of the involvement of peripheral pathways in degradation of PCBs is crucial to understanding PCB degradation in an environmental context as bacteria capable of biodegradation experience a range of carbon sources and growth phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.