Abstract

Microplastics (MPs) as a type of emerging contaminant in the environment have attracted extensive attentions in recent years, and understanding the impacts of MPs on soil biodiversity and functioning are thus increasingly urgent. Nevertheless, few studies were performed to investigate potential effects of MPs on decay of soil organic pollutants in particular pesticides and enzyme activities. Herein, three types of MPs including polystyrene fragments (PS-50) and polyvinyl chloride beads (PVC-42000 and PVC-10) were added to soil at environmentally relevant concentrations (0.2 and 1.0%) to study their impacts on dissipation of thiacloprid and activities of urease, acid phosphatase, invertase and catalase. MPs exhibited negligible impacts on thiacloprid dissipation regardless of MPs type and content, being probably attributed to the unaltered bioavailability of thiacloprid in soil even after an addition of MPs, which was documented by using the hydroxypropyl-β- cyclodextrin (HPCD) extraction method. Batch sorption experiments also exhibited the comparable adsorption capacity of thiacloprid to soil with and without MPs, along with Kf valuses of 3.44–3.77. Besides, MPs exerted negligible effects on enzyme activities of soil. Taken together, this study showed negligible impacts of MPs at environmentally relevant concentrations on thiacloprid dissipation and enzyme activity, expanding our knowledge on impacts of MPs at the environmentally relevant concentrations on pesticide dissipation in soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.