Abstract

Di(2-ethylhexyl)phthalate (DEHP) is a commonly used plasticizer, with evidence of ubiquitous human exposure and widespread occurrence in the aquatic environment. It is an emerging environmental pollutant with regulatory priority; however, most studies have focused on the toxicity of DEHP related to endocrine disruption and reproduction in mammals. The ecotoxicological impact of phthalates (e.g., DEHP) on early life stages of fish under environmentally relevant concentrations of chronic exposure remains unclear. In this study, 7-day post-hatching fry of medaka fish (Oryzias latipes) underwent 21-day continuous exposure to DEHP solutions at 20, 100 and 200 μg/L to assess the effects on fish development and locomotion and related toxic mechanisms. Larval mortality was low with DEHP (20–200 μg/L) within 21 days, but such exposure significantly reduced fish body weight and length and altered swimming behavior. At 21 days, DEHP exposure resulted in specific patterns of larval locomotion (e.g., increased maximum velocity and absolute turn angle) and dose-dependently increased the mRNA expression of acetylcholinesterase (ache) but did not alter AChE activity. Transcriptional expression of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase and peroxisome proliferation-activated receptor and retinoid X receptor genes was significantly suppressed with 21-day DEHP exposure (20–200 μg/L), with marginal alteration in reactive oxygen species levels and antioxidant activities within the dosing period. As well, DEHP altered the mRNA expression of p53-regulated apoptosis pathways, such as upregulated p53, p21 and bcl-2 and downregulated caspase-3 expression, with increased enzymatic activity of caspase-3 in larvae. Our results suggest that toxic mechanisms of waterborne DEHP altered fish growth and locomotion likely via a combined effect of oxidative stress, neurotoxicity and apoptosis pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.