Abstract

Herein, we demonstrate the customized, environmentally friendly tailoring of nanoparticles and their surface chemistry by short pulsed laser irradiation in liquids. This process allows for the formation of crystalline spherical particles exceeding several hundreds of nanometers in water from colloids of electrochemically etched silicon nanocrystals (Si-NCs), which exhibit quantum confinement effects and room-temperature stable luminescence. In particular, nanosecond (ns) pulsed laser irradiation of the Si-NC/water colloids causes the selective heating of the Si-NCs accompanied by the formation of spherical particles. In contrast, femtosecond (fs) laser pulsed irradiation induces the formation of colloidal Si-NCs with peculiar surface chemistry; in particular, fs pulses generate short-lived plasmas with more ionized species in water, which enable the surface engineering of quantum confined Si-NCs, thus limiting Si-NC agglomeration and enhancing their photoluminescent properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.