Abstract

Chemical time delays, devices that burn over specific times from under a millisecond to several seconds, are widely used in mining as well as civilian and military pyrotechnics and generally are composed of environmentally hazardous materials. Reactive nanolaminates are energetic materials composed of two or more reactants organized in an alternating layered structure, which may be fabricated with environmentally friendly components. Many traits of reactive nanolaminates are desirable for time delay applications, including their long shelf life and their highly repeatable and finely tunable reaction velocities. However, their reaction velocities are generally too high to be broadly applicable in chemical time delays. In this work, we use polymer mesh substrates to produce a constrained network of reactive particles, which reduce the reaction velocity of Al/Ni multilayers approximately 100× from a range of 2.8 to 7 m s–¹ to a range of 7 to 90 mm s–¹. This is accomplished via an interrupted reaction mechanism wherein individual particles on the coated mesh react rapidly but exhibit a delay before igniting neighboring particles due to the required heat transfer at the particles’ interfaces. We present the macroscale reaction velocities as a function of substrate composition and size, as well as reactive coating thickness and bilayer spacing. We employ high-speed videography to probe the ignition delays and finite element analysis simulations to aid in explaining the observed trends. Through selection of substrate and coating properties, time delays spanning a large range of delay times can be packaged into standard form factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.