Abstract
The green transition initiative has exposed the importance of effective recycling of Nd-Fe-B magnets for achieving sustainability and foreign independence. In this study, we considered strip-cast, hydrogenated, jet-milled Nd-Fe-B powder as a case study to explore the potential for selective chemical leaching of the Nd-rich phase, aiming to extract the Nd2Fe14B matrix phase. Diluted citric and nitric acids at concentrations of 0.01, 0.1, and 1 M were considered potential leaching mediums, and the leaching time was 15 min. Microstructural investigation, magnetic characterization, and elemental compositional analysis were performed to investigate leaching efficiency and selectivity. Based on SEM analysis, Nd/Fe ratio monitoring via ICP-MS, and the high moment/mass value at 160 emu/g for the sample leached with 1 M citric acid, 1 M citric acid proved highly selective toward the Nd-rich phase. Exposure to nitric acid resulted in a structurally damaged Nd2Fe14B matrix phase and severely diminished moment/mass value at 96.2 emu/g, thus making the nitric acid unsuitable for selective leaching. The presence of hydrogen introduced into the material via the hydrogen decrepitation process did not notably influence the leaching dynamics. The proposed leaching process based on mild organic acids is environmentally friendly and can be scaled up and adopted for reprocessing industrial scrap or end-of-life Nd-Fe-B magnets to obtain single-phase Nd-Fe-B powders that can be used for novel magnet-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.