Abstract

Superhydrophobic (SH) surfaces with self-cleaning photocatalytic properties have become an important research focus in recent years. In this work, we fabricated multifunctional and environmentally durable SH surfaces via a facile one-step reaction of octadecyl isocyanate (ODI) with TiO2 particles. The resulting films possess SH properties, facilitated by a combination of hydrophobic long alkyl chains and the hierarchical crystalline structure. Films can be prepared via spray or blade coating on a variety of hard and soft substrates, and function well when exposed to either air or oil. The coating retains its SH properties for at least 6 months in ambient conditions, and after organic pollution it can recover its SH properties using UV or sun light illumination. After water impalement, the SH properties can self-heal via the self-assembly of long alkyl chains to their original state within several hours at ambient conditions, or within minutes on a heating stage. The covalent bonds between alkyl chains and TiO2, together with hydrogen bonds between adjacent alkyl chains, greatly increased the surface durability of the SH films. This multifunctional SH coating is a very promising material for commercial and industrial coating applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call