Abstract

This paper presents an environmentally conscious integrated methodology for design and optimization of chemical process especially for separation process, whose energy consumption occupies more than 70% of the whole process. The methodology incorporates environmental factors into the chemical process synthesis at the initial design stage, which is totally different with the traditional end-of-pipe treatment method. Firstly, one rigorous model for simulation of multi-stages and multi-components separation process was developed, and based on our proposed environmental impact assessment method, the calculation methods of the reasonable economic and environment objective are constructed. Then one multi-objective mixed integer non-linear mathematical model was established by considering environmental and economic factors. Finally, the high non-linear model was solved by multi-objective evolutionary algorithm (non-dominated sorting genetic algorithm). It is often difficult to find an optimum for a process that satisfies both economic and environmental objectives simultaneously. Normally, an arrangement of optimal solutions is obtained, which forms a non-inferior set. Identifying the optimum from this non-inferior set is subjective, depending on the preference of decision makers. In this paper, technique for order preference by similarity to ideal solution (TOPSIS) for identifying the set of optimal parameters is developed and used at the decision-making step, in which the preference relation for the decision-maker over the objectives is adopted by trade-off information between objectives. The proposed methodology was highlighted through two industrialized processes, dimethyl carbonate production processes by pressure-swing distillation and extraction distillation process, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call