Abstract

A bifunctional cation exchange fiber was prepared by an efficient and environmentally benign method. In this method, sodium p-styrene sulfonate (SSS) was cografted directly onto the polypropylene (PP) fiber along with acrylic acid (AA), which eliminated the sulfonation process of grafting fiber with concentrated sulfuric acid or chlorosulfonic acid in the conventional method. Effects of the grafting conditions such as reaction temperature, reaction time, pH value, and the influence of acrylic acid and metallic salt on the graft copolymer reaction were investigated. The physicochemical properties of the cation exchange fibers were characterized with diffuse reflectance infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffractometer (XRD), thermal gravimetric analysis (TGA), TG-IR analysis, and monofilament tensile properties test. The experimental results indicate that the optimal conditions of pre-irradiation grafting are 80°C for 5 hr, and the mechanical properties and thermal stability of the product are better than those of commercial materials (Fiban.K-1). The total static ion exchange capacity (IEC) of the cationic exchange fiber is up to 5.33 mmol/g. The maximal IEC contribution from the strong acid part is 2.47 mmol/g. This synthetic method provides a clean industrial way for the preparation of bifunctional cation exchange fibers. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.