Abstract

Aratus pisonii and Minuca rapax are two brachyuran crabs living with bacterial ectosymbionts located on gill lamellae. One previous study has shown that several rod-shaped bacterial morphotypes are present and the community is dominated by Alphaproteobacteria and Bacteroidota. This study aims to identify the mode of transmission of the symbionts to the new host generations and to identify the bacterial community colonizing the gills of juveniles. We tested for the presence of bacteria using PCR with universal primers targeting the 16S rRNA encoding gene from gonads, eggs, and different larval stages either obtained in laboratory conditions or from the field. The presence of bacteria on juvenile gills was also characterized by scanning electron microscopy, and subsequently identified by metabarcoding analysis. Gonads, eggs, and larvae were negative to PCR tests, suggesting that bacteria are not present at these stages in significant densities. On the other hand, juveniles of both species display three rod-shaped bacterial morphotypes on gill lamellae, and sequencing revealed that the community is dominated by Bacteroidota and Alphaproteobacteria on A. pisonii juveniles, and by Alphaprotobacteria, Bacteroidota, and Acidimicrobia on M. rapax juveniles. Despite the fact that juveniles of both species co-occur in the same biotope, no shared bacterial phylotype was identified. However, some of the most abundant bacteria present in adults are also present in juveniles of the same species, suggesting that juvenile-associated communities resemble those of adults. Because some of these bacteria were also found in crab burrow water, we hypothesize that the bacterial community is established gradually during the life of the crab starting from the megalopa stage and involves epibiosis-competent bacteria that occur in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call