Abstract

Contaminated site assessment and monitoring requires efficient risk-management tools including innovative environmental toxicity tests. The first application of microcalorimetry for toxicity testing draw the attention to a possible new tool to increase sensitivity, to eliminate matrix effect and to study effect-mechanism. A Thermal Activity Monitor (TAM) microcalorimeter was used for measuring the heat production of various test organisms when getting in contact with sterile toxic soils. Well known bacterial (Azomonas agilis), animal (Folsomia candida) and plant test organisms (Sinapis alba) were tested for heat production. The heat response of selected testorganisms was measured in case of metal (Cu and Zn) and organic pollutant (Diesel oil, DBNPA and PCP) contaminated soils. In addition to the quantitative determination of the heat production, the mechanism of the toxic effect can be characterized from the shape of the power-time curve (slope of the curve, height and time of the maximum). In certain concentration ranges the higher the pollutant concentration of the soil the lower the maximum of the time-heat curve. At low pollutant concentrations an increased heat production was measured in case of A. agile and 20 and 200 mg Zn kg(-1) soil. The microcalorimetric testing was more sensitive in all cases than the traditional test methods. Our results showed that the microcalorimetric test method offers a new and sensitive option in environmental toxicology, both for research and routine testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.