Abstract

The degradation of habitats and species loss in freshwaters is far greater than in any other ecosystem. The decline in biodiversity has a strong potential to alter the functioning of the ecosystem and the services they provide to human society. Therefore, there is an urgent need for accurate information on patterns and drivers of diversity that could be used in the management of freshwater ecosystems. We present the results of an analysis of the relationships between macrophyte species richness and environmental characteristics using an extensive dataset collected from 160 sites in two central-European bioregions. We modelled macrophyte species richness using recursive partitioning methods to assess the diversity-environmental relationships and to estimate the environmental thresholds of species richness in rivers, streams, ditches and ponds. Several hydrological and chemical variables were identified as significant predictors of macrophyte richness. Among them, pH, conductivity, turbidity and substrate composition appeared as the most important. There is also evidence that natural ponds support a greater number of plant species than man-made ponds. Based on the detected environmental thresholds, we offer a series of simple rules for maintaining higher macrophyte species richness, which is potentially useful in the conservation and management of aquatic habitats in central Europe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call