Abstract

IntroductionThe aim of the present study was to analyze how a low environmental temperature can affect the fatigue life of instruments made by different types of heat-treated nickel-titanium alloys. MethodsThe flexural cyclic fatigue of 40 new specimens for each of the following systems was tested for cyclic fatigue resistance: ProTaper Universal F2 (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Gold F2 (Dentsply Tulsa Dental Specialties, Tulsa, OK), Twisted Files SM2 (SybronEndo, Orange, CA), Mtwo #25.06 (VDW, Munich, Germany), and Vortex Blue #30.04 and #40.06 (Dentsply Tulsa Dental Specialties). Instruments were tested at 2 different environmental temperatures: 20°C (±2°C) for room temperature (RT) group and −20°C (±2°C) for the cooled environment (CE) group (n = 20). The number of cycles to failure (NCF) and the length of the fractured fragment (FL) were recorded. The means and standard deviations of NCF and FL were then calculated; NCF data were statistically analyzed using a paired t test between groups RT and CE for each instrument tested (P < .05), whereas FL data were analyzed using analysis of variance (P < .05). ResultsThe mean NCF values measured were significantly higher for the CE groups than the RT groups in all the systems tested (P < .05). The increase in cyclic fatigue resistance varied from 274%–854%. No differences in FL were registered among the different groups (P < .05). ConclusionsA low environmental temperature determines a drastic increase in the flexural fatigue resistance of NiTi endodontic instruments manufactured with traditional alloy and different heat treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.