Abstract
Butterfly wing characteristics are extensively used as model system in studies of development, quantitative genetics and phenotypic plasticity. In spite of its evolutionary relevance, however, the effect of stress on the expression of genetic variation itself has only rarely been studied. In this paper, we explore genetic variation of wing characteristics of the Speckled wood Pararge aegeria along a host plant drought stress gradient. Forewing area, basal and distal degree of melanization and the area of five yellow wing spots were measured. We found an increase in (additive) genetic variation in degree of melanization at higher drought stress, and a similar, yet non-significant, relationship for forewing size. As a result, both the upper limits of the narrow-sense heritability and the coefficient of additive genetic variation of wing size and melanization increased with drought stress. Patterns for the different yellow wing spots were less consistent, suggesting trait-specificity in the relationships between genetic variation and environmental stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.