Abstract

Schwertmannite is sensitive to changes in geochemical, thermal, and microbial conditions. Changes in aqueous pH beyond its stability, i.e. pH 2.5–4.5, triggers its transformation to jarosite or goethite in highly acidic environments (pH ≤ 2.5), depending on the availability of jarosite-directing cations (Na+, NH4+, K+, etc.), while goethite is the common stable end product at pH > 7.5. Schwertmannite with degraded morphology can stably exist for years in oxic intermediate pH environments (pH 5.5–6.5), but the presence of trace amounts of Fe(II)aq yields goethite/lepidocrocite within a few hours, especially at pH ≥ 6.5. Hematite is the sole end product at ≥ 600 °C dry heating, with goethite and ferrihydrite as intermediate phases. Siderite, maghemite, and mackinawite form in anoxic microbial conditions due to dissimilatory reduction of Fe(III) and SO42− to Fe(II) and HS−, while orpiment forms from As(V)-rich schwertmannites. Sorbed contaminants enhance schwertmannite stability by restricting Fe(II)–Fe(III) electron transfer and microbial degradation by occupying surface sites. Although Fe(III) and sorbed ion mobilization typically has negligible effects on schwertmannite transformation, complete schwertmannite-SO4 release is likely in extreme conditions, and in microbial Fe(II)aq-rich media. Dissolution–reprecipitation and solid state transformation mechanisms broadly govern schwertmannite transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call