Abstract

BackgroundRNA interference (RNAi) regulates gene expression in most multicellular organisms through binding of small RNA effectors to target transcripts. Exploiting this process is a popular strategy for genetic manipulation and has applications that includes arthropod pest control. RNAi technologies are dependent on delivery method with the most convenient likely being feeding, which is effective in some animals while others are insensitive. The two-spotted spider mite, Tetranychus urticae, is prime candidate for developing RNAi approaches due to frequent occurrence of conventional pesticide resistance. Using a sequencing-based approach, the fate of ingested RNAs was explored to identify features and conditions that affect small RNA biogenesis from external sources to better inform RNAi design.ResultsBiochemical and sequencing approaches in conjunction with extensive computational assessment were used to evaluate metabolism of ingested RNAs in T. urticae. This chelicerae arthropod shows only modest response to oral RNAi and has biogenesis pathways distinct from model organisms. Processing of synthetic and plant host RNAs ingested during feeding were evaluated to identify active substrates for spider mite RNAi pathways. Through cataloging characteristics of biochemically purified RNA from these sources, trans-acting small RNAs could be distinguished from degradation fragments and their origins documented.ConclusionsUsing a strategy that delineates small RNA processing, we found many transcripts have the potential to enter spider mite RNAi pathways, however, trans-acting RNAs appear very unstable and rare. This suggests potential RNAi pathway substrates from ingested materials are mostly degraded and infrequently converted into regulators of gene expression. Spider mites infest a variety of plants, and it would be maladaptive to generate diverse gene regulators from dietary RNAs. This study provides a framework for assessing RNAi technology in organisms where genetic and biochemical tools are absent and benefit rationale design of RNAi triggers for T.urticae.

Highlights

  • RNA interference (RNAi) regulates gene expression in most multicellular organisms through binding of small RNA effectors to target transcripts

  • Degradation fragments are typically associated with smaller read sizes, greater representation of longer sized reads in the column purified libraries demonstrates the effectiveness of isolating functional small RNAs

  • Based on our finding that structured plant-derived RNAs enter spider mite RNAi pathways we investigated the activity of short hairpin RNAs that mimic distinct, known miRNA-type biogenesis (Fig. 5a)

Read more

Summary

Introduction

RNA interference (RNAi) regulates gene expression in most multicellular organisms through binding of small RNA effectors to target transcripts. Exploiting this process is a popular strategy for genetic manipulation and has applications that includes arthropod pest control. The two-spotted spider mite, Tetranychus urticae, is prime candidate for developing RNAi approaches due to frequent occurrence of conventional pesticide resistance. Hundreds of different crops and ornamental plants are infested by spider mites These mites can rapidly develop resistance to conventional pesticides, making this organism a prime candidate for new pest control technologies such as RNAi [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call