Abstract

Arsenic (As)-bearing water treatment residuals (WTRs) from household sand filters are usually disposed on top of floodplain soils and may act as a secondary As contamination source. We hypothesized that open disposal of these filter-sands to soils will facilitate As release under reducing conditions. To quantify the mobilization risk of As, we incubated the filter-sand, the soil, and a mixture of the filter-sand and soil in anoxic artificial rainwater and followed the dynamics of reactive Fe and As in aqueous, solid, and colloidal phases. Microbially mediated Fe(III)/As(V) reduction led to the mobilization of 0.1-4% of the total As into solution with the highest As released from the mixture microcosms equaling 210 μg/L. Due to the filter-sand and soil interaction, Mössbauer and X-ray absorption spectroscopies indicated that up to 10% Fe(III) and 32% As(V) were reduced in the mixture microcosm. Additionally, the mass concentrations of colloidal Fe and As analyzed by single-particle ICP-MS decreased by 77-100% compared to the onset of reducing conditions with the highest decrease observed in the mixture setups (>95%). Overall, our study suggests that (i) soil provides bioavailable components (e.g., organic matter) that promote As mobilization via microbial reduction of As-bearing Fe(III) (oxyhydr)oxides and (ii) As mobilization as colloids is important especially right after the onset of reducing conditions but its importance decreases over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call