Abstract

Distal sensorimotor polyneuropathy (DSPN) is a common condition in older populations with high prevalence of obesity and type 2 diabetes. We hypothesised that the risk of DSPN is increased by multiple ubiquitous environmental risk factors, particularly in people with obesity. This study was based on 423 individuals aged 62–81 years without DSPN who participated in the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4 survey (2006–2008) in Southern Germany. During 6.5 years of follow-up, 188 participants developed clinical DSPN as assessed by the Michigan Neuropathy Screening Instrument. Environmental exposures, including air temperature, surrounding greenness (assessed with the normalized difference vegetation index [NDVI]), long-term road traffic noise and air pollution, were assessed at participants' residences. The cumulative risk index (CRI) evaluated the joint effects of co-occurring exposures on DSPN risk based on effect estimates from multi-exposure Poisson regression models. The models were adjusted for age, sex, height, waist circumference, smoking, alcohol consumption, physical activity, education and neighbourhood socioeconomic status. In the entire cohort, the co-occurrence of an interquartile range (IQR) decrease in temperature of the warm season and NDVI in a 100-m buffer and of an IQR increase in night-time average traffic noise and in annual average particle number concentration (PNC) was positively associated with incident DSPN (CRI [95 % CI] 1.39 [1.02, 1.91]). Effect estimates for exposure combinations were generally higher in individuals with obesity (CRI 1.34–2.01) than in those without obesity (CRI 0.90–1.33). The four-exposure model showed a twofold increased risk of DSPN among obese (CRI [95 % CI] 2.01 [1.10, 3.67]), but not among non-obese individuals (CRI [95 % CI] 1.18 [0.83, 1.67]). Thus, ubiquitous environmental exposures jointly augment the risk of DSPN in the older population. Lower air temperature in the warm season, less greenness, and higher noise levels and ultrafine particle concentrations identified people with obesity as a particularly vulnerable subgroup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call