Abstract
The presence of pharmacologically active compounds (PhACs) in surface waters poses an environmental risk of chronic exposure to nontarget organisms, which is a well-established and serious concern worldwide. Our aim was to determine the temporal changes in ecological risk quotient (RQ) based on the concentrations of 42 PhACs from six sampling sites on seven sampling dates in the water of a freshwater lake in Central Europe preferentially visited by tourists. Our hypothesis was that the environmental risk increases during the summer holiday season due to the influence of tourists. Different experimental toxicological threshold concentrations and seasonal measured environmental concentrations of 16 PhACs were applied to ecological risk assessment. RQs of 4 dominant PhACs (diclofenac, estrone [E1], estradiol [E2], and caffeine) indicated high ecological risk (RQ > 1) for freshwater ecosystems. Additionally, our results confirmed the assumptions that the high tourist season had a significant impact on the calculated RQ; however, these results are mainly due to the concentration and temporal change of particular PhACs, including diclofenac (5.3-419.4 ng/L), E1 (0.1-5.5 ng/L), and E2 (0.1-19.6 ng/L). The seasonal dependent highest RQs changed as follows: 9.80 (June 2017; E2), 1.23 (August 2017; E1), 0.43 (November 2017; E1), 0.51 (April 2018; E1), 5.58 (June 2018, diclofenac), 39.50 (August 2018; diclofenac), and 30.60 (October 2018; diclofenac).
Highlights
Medicine has improved considerably in recent decades, contributing to the increase in the average age and fast growth of the human population
Information is lacking about possible harmful effects on nontarget freshwater organisms when different pharmacologically active compounds (PhACs) form a mixture in receiving environments (Guzel et al 2019)
Even though the measured environmental concentration (MEC) is known, since there is a lack of standardized experimental toxicity data in many cases, the ecological risk assessment (ERA) cannot be appropriately performed (Ferrari et al 2004)
Summary
Medicine has improved considerably in recent decades, contributing to the increase in the average age and fast growth of the human population. Is the limited available experimental toxicity data (median effective concentration [EC50], median lethal concentration [LC50], and no observed effect concentration [NOEC]) a problem (Ginebreda et al 2010; Hernando et al 2006; la Farre et al 2008; Thomaidi et al 2015), but even if such data exist and are accessible, they are usually described based on different observations (e.g., various endpoints and species), so, in other words, they are not consistent (Lange and Dietrich 2002) This is understandable because different studies of PhACs have been conducted in vivo using different mechanisms; the effect of the given PhACs has been observed using different endpoints (e.g., growth, mortality, reproduction or developmental, behavioural effects, and molecular, cellular, tissue level changes). Even though the MEC is known, since there is a lack of standardized experimental toxicity data in many cases (la Farre et al 2008; Thomaidi et al 2015), the ecological risk assessment (ERA) cannot be appropriately performed (Ferrari et al 2004)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.