Abstract
The redox status of a system may be analyzed in terms of the redox potential (redox intensity component) and the size of the pool of electrons able to be transferred (redox capacity component). In single chemical systems, both terms are thermodynamically related by means of the Nernst equation, the classical redox equilibrium equation. Consequently, either the redox potential measurement or the redox capacity may be used without distinction to define the redox characteristics of these systems. However, in natural environments, which are a complex mixture of compounds undergoing redox reactions in several stages of nonequilibrium, it is difficult to establish the relationships linking redox potential and redox capacity. In this situation, as suggested by various authors, the complementary use of intensity and capacity measurements improves the characterization of the redox status of these systems. The aim of this laboratory experiment is to enable undergraduate students of applied biology (agronomy, veteri...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.