Abstract

To improve glycemic health, a high-amylose bread wheat flour fresh pasta characterized by a low in vitro glycemic index (GI) and improved post-prandial glucose metabolism was previously developed. In this study, well-known life cycle analysis software was used in accordance with the PAS 2050 and mid- and end-point ReCiPe 2016 standard methods to assess, respectively, its carbon footprint and overall environmental profile, as weighted by a hierarchical perspective. Even if both eco-indicators allowed the identification of the same hotspots (i.e., high-amylose bread wheat cultivation and consumer use of fresh pasta), the potential consumer of low-GI foods should be conscious that the novel low-GI fresh pasta had a greater environmental impact than the conventional counterpart made of common wheat flour, their corresponding carbon footprint or overall weighted damage score being 3.88 and 2.51 kg CO2e/kg or 184 and 93 mPt/kg, respectively. This was mainly due to the smaller high-amylose bread wheat yield per hectare. Provided that its crop yield was near to that typical for common wheat in Central Italy, the difference between both eco-indicators would be not greater than 9%. This confirmed the paramount impact of the agricultural phase. Finally, use of smart kitchen appliances would help to relieve further the environmental impact of both fresh pasta products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call