Abstract

BackgroundWest Nile virus (WNV) is a mosquito-borne pathogen of global public health importance. Transmission of WNV is determined by abiotic and biotic factors. The objective of this study was to examine environmental variables as predictors of WNV risk in Europe and neighboring countries, considering the anomalies of remotely sensed water and vegetation indices and of temperature at the locations of West Nile fever (WNF) outbreaks reported in humans between 2002 and 2013.MethodsThe status of infection by WNV in relationship to environmental and climatic risk factors was analyzed at the district level using logistic regression models. Temperature, remotely sensed Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index (MNDWI) anomalies, as well as population, birds’ migratory routes, and presence of wetlands were considered as explanatory variables.ResultsThe anomalies of temperature in July, of MNDWI in early June, the presence of wetlands, the location under migratory routes, and the occurrence of a WNF outbreak the previous year were identified as risk factors. The best statistical model according to the Akaike Information Criterion was used to map WNF risk areas in 2012 and 2013. Model validations showed a good level of prediction: area under Receiver Operator Characteristic curve = 0.854 (95% Confidence Interval 0.850-0.856) for internal validation and 0.819 (95% Confidence Interval 0.814-0.823) (2012) and 0.853 (95% Confidence Interval 0.850-0.855) (2013) for external validations, respectively.ConclusionsWNF incidence is increasing in Europe and WNV is expanding into new areas where it had never been observed before. Our model can be used to direct surveillance activities and public health interventions for the upcoming WNF season.

Highlights

  • West Nile virus (WNV) is a mosquito-borne pathogen of global public health importance

  • West Nile fever (WNF) incidence is increasing in Europe and WNV is expanding into new areas where it had never been observed before

  • West Nile disease (WND), including West Nile fever (WNF) and West Nile neuro invasive disease (WNND), is an emerging arbovirosis originating from the Old World which was introduced to the Americas in

Read more

Summary

Introduction

West Nile virus (WNV) is a mosquito-borne pathogen of global public health importance. The objective of this study was to examine environmental variables as predictors of WNV risk in Europe and neighboring countries, considering the anomalies of remotely sensed water and vegetation indices and of temperature at the locations of West Nile fever (WNF) outbreaks reported in humans between 2002 and 2013. West Nile virus (WNV), a member of the Flavivirus genus (family Flaviviridae), is responsible for West Nile disease (WND), which causes considerable morbidity and mortality worldwide. WND, including West Nile fever (WNF) and West Nile neuro invasive disease (WNND), is an emerging arbovirosis originating from the Old World which was introduced to the Americas in [1]. Head of Health Determinants Programme, Office of the Chief Scientist, European Centre for Disease Prevention and Control, Office of the Chief. WNV is pathogenic for horses and humans who are accidental hosts [4]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call