Abstract

Man’s experience and exploration of the underwater environment has been recorded from ancient times and today encompasses large sections of the population for sport enjoyment, recreational and commercial purpose, as well as military strategic goals. Knowledge, respect and maintenance of the underwater world is an essential development for our future and the knowledge acquired over the last few dozen years will change rapidly in the near future with plans to establish secure habitats with specific long-term goals of exploration, maintenance and survival. This summary will illustrate briefly the physiological changes induced by immersion, swimming, breath-hold diving and exploring while using special equipment in the water. Cardiac, circulatory and pulmonary vascular adaptation and the pathophysiology of novel syndromes have been demonstrated, which will allow selection of individual characteristics in order to succeed in various environments. Training and treatment for these new microenvironments will be suggested with description of successful pioneers in this field. This is a summary of the physiology and the present status of pathology and therapy for the field.

Highlights

  • Exploration of underwater environments predates documentation for possibly 1000s of years, but written evidence dates back to Ancient Greece in the 4th century BCE; Aristotle recounts the use of a primitive diving bell, an overturned cauldron that trapped air from the atmosphere

  • Today diving is incorporated into many aspects of modern society including: sports, recreation, industry, and widespread strategic military goals

  • Subaquatic environments expose divers to a variety of pathologies, varying from drowning, probably the most frequent complication induced by inhalation of water and resulting in asphyxia, to transient syncope, i.e., loss of consciousness usually resulting from systemic or district hypoxia during breath-hold diving

Read more

Summary

Introduction

Exploration of underwater environments predates documentation for possibly 1000s of years, but written evidence dates back to Ancient Greece in the 4th century BCE; Aristotle recounts the use of a primitive diving bell, an overturned cauldron that trapped air from the atmosphere. For each 10 m depth in water a diver is exposed to an additional pressure of 1 ATA Because gases are compressible the lung may experience significant changes in volume, especially during hasty ascents (Pendergast et al, 2015). Because of the high thermal capacity of gases under pressure, breathing mixtures during deep diving in cold water are sometimes preheated (Brubakk et al, 2003).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call