Abstract

Photosensitized degradation of a textile azo dye, Acid Orange 7, has been carried out on TiO2 particles using visible light. Mechanistic details of the dye degradation have been elucidated using diffuse reflectance absorption and FTIR techniques. Degradation does not occur on Al2O3 surface or in the absence of oxygen. The dependence of the dye degradation rate on the surface coverage shows the participation of excited dye and TiO2 semiconductor in the surface photochemical process. Diffuse reflectance laser flash photolysis confirms the charge injection from the excited dye molecule into the conduction band of the semiconductor as the primary mechanism for producing oxidized dye radical. The surface-adsorbed oxygen plays an important role in scavenging photogenerated electrons, thus preventing the recombination between the oxidized dye radical and the photoinjected electrons. Diffuse reflectance FTIR was used to make a tentative identification of reaction intermediates and end products of dye degradation. The intermediates, 1,2-naphthoquinone and phthalic acid, have been identified during the course of degradation. Though less explored in photocatalysis, the photosensitization approach could be an excellent choice for the degradation of colored pollutants using visible light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.