Abstract
Members of the genus Bordetella include human and animal pathogens that cause a variety of respiratory infections, including whooping cough in humans. Despite the long known ability to switch between a within-animal and an extra-host lifestyle under laboratory growth conditions, no extra-host niches of pathogenic Bordetella species have been defined. To better understand the distribution of Bordetella species in the environment, we probed the NCBI nucleotide database with the 16S ribosomal RNA (16S rRNA) gene sequences from pathogenic Bordetella species. Bacteria of the genus Bordetella were frequently found in soil, water, sediment, and plants. Phylogenetic analyses of their 16S rRNA gene sequences showed that Bordetella recovered from environmental samples are evolutionarily ancestral to animal-associated species. Sequences from environmental samples had a significantly higher genetic diversity, were located closer to the root of the phylogenetic tree and were present in all 10 identified sequence clades, while only four sequence clades possessed animal-associated species. The pathogenic bordetellae appear to have evolved from ancestors in soil and/or water. We show that, despite being animal-adapted pathogens, Bordetella bronchiseptica, and Bordetella hinzii have preserved the ability to grow and proliferate in soil. Our data implicate soil as a probable environmental origin of Bordetella species, including the animal-pathogenic lineages. Soil may further constitute an environmental niche, allowing for persistence and dissemination of the bacterial pathogens. Spread of pathogenic bordetellae from an environmental reservoir such as soil may potentially explain their wide distribution as well as frequent disease outbreaks that start without an obvious infectious source.
Highlights
Bacteria of the genus Bordetella are of primary importance in human and veterinary medicine because of their ability to colonize the respiratory tract, causing a wide range of pulmonary and bronchial infections
The common human- and animal-adapted pathogens B. pertussis, B. parapertussis, and B. bronchiseptica are known as the “classical” Bordetella species
B. pertussis is a strictly human pathogen, but B. parapertussis consists of two lineages, one infecting humans and the other infecting sheep (Mattoo and Cherry, 2005)
Summary
Bacteria of the genus Bordetella are of primary importance in human and veterinary medicine because of their ability to colonize the respiratory tract, causing a wide range of pulmonary and bronchial infections. The common human- and animal-adapted pathogens B. pertussis, B. parapertussis, and B. bronchiseptica are known as the “classical” Bordetella species. B. pertussis is a strictly human pathogen, but B. parapertussis consists of two lineages, one infecting humans and the other infecting sheep (Mattoo and Cherry, 2005). In contrast to these examples of adaptation to a single host, B. bronchiseptica colonizes a variety of animals and even humans (Register et al, 2015), resulting in a broad array of respiratory diseases, from asymptomatic colonization to lethal pneumonia (Goodnow, 1980). In contrast to other bordetellae, B. trematum (Vandamme et al, 1996) and B. ansorpii (Ko et al, 2005) are not associated with respiratory problems but were isolated from human wound infection
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.