Abstract
Nitroaromatic compounds (NACs) are considered important groups of chemicals mainly produced by human and industrial activities. The large-scale application of these xenobiotics creates contamination of the water and soil environment. Despite applicability, NACs have been caused severe hazardous side effects in animals and human systems like different cancers, anemia, skin irritation, liver damage and mutagenic effects. The effective remediation of the NACs from the environment is a significant concern. Researchers have implemented physicochemical and biological methods for the remediation of NACs from the environment. Most of the applied methods are based on adsorption and degradation approaches. Among these methods, degradation is considered a versatile method for the subsequent removal of NACs due to its exceptional properties like simplicity, easy operation, cost-effectiveness, and availability. Most importantly, the degradation process does not generate hazardous side products and wastes compared to other methods. Hence, the importance of NACs, their remediation, and supreme attributes of the degradation method have encouraged us to review the recent progress and development for the removal of these perilous materials using degradation as a versatile method. Therefore, in this review, (i) NACs, physicochemical properties, and their hazardous side effects on humans and animals are discussed; (ii) Physicochemical methods, microbial, anaerobic bioremediation, mycoremediation, and aerobic degradation approaches for the degradation of NACs were thoroughly vetted; (iii) The possible mechanisms for degradation of NACs were investigated and discussed. (iv) The applied kinetic models for evaluation of the rate of degradation were also assessed and discussed. Finally, (vi) current challenges and future prospects of proposed methods for degradation and removal of NACs were also directed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.