Abstract

Insect gut microbiomes consist of bacteria, fungi, and viruses that can act as mutualists to influence the health and fitness of their hosts. While much has been done to increase understanding of the effects of environmental factors that drive insect ecology, there is less understanding of the effects of environmental factors on these gut microbial communities. For example, the effect of environmental nutrients on most insect gut microbiomes is poorly defined. To address this knowledge gap, we investigated the relationship between environmental nutrients and the gut microbial communities in a small study of katydids (n = 13) of the orthopteran species Orchelimum vulgare collected from a costal prairie system. We sampled O. vulgare from unfertilized plots, as well as from plots fertilized with added nitrogen and phosphorus or sodium separately and in combination. We found significantly higher Shannon diversity for the gut bacterial communities in O. vulgare from plots fertilized with added sodium as compared to those collected from plots without added sodium. In contrast, diversity was significantly lower in the gut fungal communities of grasshoppers collected from plots with added nitrogen and phosphorus, as well as those with added sodium, in comparison to those with no added nutrients. There was also a strong positive correlation between the gut bacterial and gut fungal community diversity within each sample. Indicator group analysis for added sodium plots included several taxa with known salt-tolerant bacterial and fungal representatives. Therefore, despite the small sample number, these results highlight the potential for the gut bacterial and fungal constituents to respond differently to changes in environmental nutrient levels. Future studies with a larger sample size will help identify mechanistic determinants driving these changes. Based on our findings and the potential contribution of gut microbes to insect fitness and function, consideration of abiotic factors like soil nutrients along with characteristic gut microbial groups is necessary for better understanding and conservation of this important insect herbivore.

Highlights

  • The rise in the research interest on insect microbiomes has helped reveal novel insights and understanding of insect ecology

  • There was a total of 11 bacterial families present at an average relative abundance of 2% or higher in all four treatment groups (Figure 2A) with the 6 most abundant families being Enterobacteriaceae, Lactobacillaceae, Listeriaceae, Methylobacteriaceae, Pseudomonadaceae, and Rhizobacteriaceae

  • We demonstrated that abiotic factors, in this case, environmental shifts in soil nutrients like nitrogen and phosphorus together (NP) and Na, result in changes the gut microbiome of O. vulgare

Read more

Summary

Introduction

The rise in the research interest on insect microbiomes has helped reveal novel insights and understanding of insect ecology. At our field study in a Texas coastal prairie, grasshoppers showed an increase in abundance in plots treated with nitrogen, phosphorus, and sodium, an observation indicative of nutrient co-limitation experienced by the herbivores ecosystem (Prather et al, 2018). A concomitant increase in the herbivore richness and diversity was observed in this ecosystem (Prather et al, 2018) While specific mechanisms, such as nutrient status of plants and soil or insect feeding behavior, underlying these observations remain to be determined, it is clear that environmental perturbations of nutrients may affect grasshopper ecology and potentially reflect the nutrient status experienced by these animals in a manner that does not fully follow the conventional wisdom with plants

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.