Abstract

This study investigated toxic metal distribution in roadside soil and dust in the metropolitan city of Ulsan, South Korea, and the factors affecting distribution, using Korean waste-leaching tests, determination of total concentrations, sequential extraction, and statistical analysis. Composite grab samples were collected from high-traffic roads (7 sites), low-traffic roads (2 sites), and an uncontaminated control area (2 sites) in Ulsan. The pH of roadside soil and dust was slightly alkaline. The concentrations of copper, lead, and zinc in soil as determined by Korean waste-leaching tests decreased as soil depth increased, while those of arsenic, nickel, and chromium increased. Leaching concentrations in dust were lower than in soil, with the exception of copper. Total concentrations decreased as soil depth increased, and total concentrations of metals in dust were higher than in soil. The sampling sites that exceeded the regulation levels of soil contamination in South Korea were 7 points in topsoil, 3 points in middle soil, and 9 points in dust. TCLP tests showed that the concentrations of arsenic, cadmium, and lead in topsoil and dust at Duwang and Myeongchon intersections were higher than regulatory levels. The maximum correlation coefficient among two metals in soil and dust was 0.987 (p < 0.01), for cadmium and lead. Concentrations of cadmium, copper, arsenic, lead, nickel, and mercury, mostly from tire and brake-pad abrasion, were highly correlated. The strong positive correlation between traffic volume and metals in dust suggests that vehicle emissions may be responsible for metal contamination of soil and dust. Pollution indices of topsoil at 4 sites and all dust at 7 high-traffic sites were higher than 1.0, which is consistent with an effect of vehicle traffic on metal contamination in soil and dust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call