Abstract

Biowastes produced by humans and animals are routinely disposed of on land, and concern is now growing that such practices provide a pathway for fluoroquinolone (FQs) antibacterial agents and their environmental metabolites (FQEMs) to contaminate the terrestrial environment. The focus of concern is that FQs and FQEMs may accumulate in amended soils to then adversely impact on the terrestrial environment. One postulated impact is the development of a selective environment in which FQ-resistant bacteria may grow. To find evidence in support of an accumulation of antibacterial-like activity, it was first necessary to establish whether any biologically active FQEMs could be synthesized by physicochemical factors that are normally present in the environment. However, many FQEMs are not commercially available to be used as standards in such studies. FQEMs were therefore synthesized using well-defined processes. They were subsequently analyzed using spectroscopy (UV-vis) and high performance liquid chromatography with mass spectral detection. The antibacterial-like activities of fractionated FQEMs were then assessed in novel bacterial growth inhibition bioassays, and results were compared to those obtained from instrumental analyses. Parent FQs were either exposed to sunlight or were synthesized using defined aerobic microbial (Mycobacterium gilvum or a mixed culture derived from an agricultural soil) fermentation processes. Mixtures of FQEMs derived from photo- and (intracellular) microbial processes were isolated by preparative chromatography and centrifugation techniques, respectively. Mixtures were subsequently fractionated using analytical high-performance thin layer chromatography (HPTLC), and excised analytes were tested in bioautography assays for their antibacterial-like activities. Two bacteria, Escherichia coli (E. coli) and Azospirillum brasilense (A. brasilense) were used as reporter organisms in testing FQ standards and any subtle differences between biologically active FQEMs of ciprofloxacin (CF). FQEMs produced in the photo-synthetic process had UV-vis profiles that were indistinguishable from the parent FQs, and yet mass spectral data revealed the presence of N-formylciprofloxacin (FCF). In contrast, the UV-vis profiles of FQEMs synthesized by M. gilvum and a mixed culture of microorganisms had UV-vis profiles that were similar to one another and markedly different to the parent fluoroquinolones. Mass spectral studies confirmed the presence of FCF and N-acetylciprofloxacin in both microbial ferments. In addition, a photo-FQEM (Cp 6), three M. gilvum FQEMs (Cm 5, Cm 8, and Cm 10) and a mixed culture FQEM (Cs 6) of CF and many other FQEMs of CF, norfloxacin (NF), and enrofloxacin (EF) were fractionated using HPTLC, although their identities have yet to be confirmed. Differences between bioautography results were obtained when E. coli or A. brasilense were used as reporter organisms. Parent FQs (CF and EF) and the FQEMs of CF (Cp 6, Cm 8, and Cs 6) displayed antibacterial-like activity when using E. coli as the reporter organism. In contrast, A. brasilense was insensitive to parent CF and sensitive to EF and all tested FQEMs of CF. Results are consistent with photo- and microbial processes modifying CF in different ways, with the latter changing the UV-vis chromophores. It can be inferred that a lack of detection of analytes (especially photo-FQEMs) when using UV-vis does not necessarily indicate an absence of analyte. Additionally, similarities between the UV-vis profiles of FQEMs extracted from the (monoculture) M. gilvum and the mixed culture microbial aerobic ferments are consistent with similar processes operating in both ferments. Results of HPTLC and bioautography studies revealed that mixtures of (photo- and microbial) FQEMs could be fractionated into individual components. Bioactive FQEMs of ciprofloxacin, as a representative FQ, can be synthesized by photo- and microbial processes, and their detection required the use of both instrumental and bioautography analytical techniques. It is likely that such FQEMs will also be present on agricultural land that has been repeatedly amended with FQ-contaminated biosolids. The use of instrumental analytical techniques alone and especially photometric detection techniques will underestimate antibacterial-like activities of FQEMs. Moreover, the extraction technique(s) and the selected toxicological endpoint(s) require careful consideration when assessing bioactivity. It is therefore recommended that instrumental analytical techniques and several bioautography assays be performed concurrently, and bioautography assays should use a variety of reporter organisms. Two types of bacterial growth bioassays are recommended in any assessment of antibacterial-like activity derived from CF (and possibly from other FQs). A standardized E. coli bioassay should be used as a general screening procedure to facilitate intra- and inter-laboratory exchange of data. Additionally, soil-specific (region-specific) growth inhibition bioassays should be undertaken using several species of endemic soil bacteria. It is likely that the two sets of data will be useful in future risk assessment processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.