Abstract
Environmental (i.e. non-genetic) maternal effects have the potential to associate the environmental conditions faced by mothers during gestation or before egg laying with the phenotype of their offspring. For this reason, maternal effects may play a major role in determining offspring phenotype independently of the genotype of the individuals, and can thus be considered a mechanistic basis of phenotypic plasticity. Despite the ecological and evolutionary implications of environmental maternal effects, few studies have experimentally investigated this phenomenon in reptiles. Here we report the results of an experimental laboratory study on the effects of maternal feeding rate and density on offspring locomotor performance in the common lizard (Lacerta vivipara). Lacerta vivipara is a viviparous lizard, and viviparity enhances the probability of a maternal influence on offspring phenotype. We focused on a particular phenotypic trait, maximal sprint running speed, because this trait is thought to be selectively important in squamates. Sprint speed was a repeatable trait, and it varied significantly among families. Maternal feeding rate significantly affected sprint speed, whereas density had no effect on this trait. The effect of maternal feeding rate differed according to the sex of the offspring and their body size, resulting in significant two-way and three-way interactions among these factors. In other words, the maternal feeding rate changed the shape of the allometric relationship between-speed and size, but differently for males and females. The complexity of such effects makes it extremely difficult to offer an adaptive interpretation, but emphasizes the role played by the environment in shaping phenotypes among generations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.