Abstract
An environmental magnetic and magnetic fabric study of sedimentscollected from Lake Waynewood, a post-glacial lake in the PoconoMountains of Pennsylvania, USA, provided a history of the lake's watersheddynamics over the past 3500 years. Two 5 m long, Mackereth coresof lake sediments and three watershed soil profiles were analyzed magnetically.Paleosecular variation and 14C measurements allowed timing ofchanges in the lake's watershed which are documented by changes in ARM,SIRM,χ, S-ratio, SIRM/χ, ARM/χ and ARM/SIRMdowncore. Prior to 2900 years BP, there is little evidence for allogenicinflux. Dramatic changes in mineral magnetic properties and a strong AARmagnetic fabric appear approximately 2900 years BP, suggesting major changes inwatershed conditions, either in the hydrologic regime or in vegetative cover.Between 2900 and 1800 yrs BP, large variations in magnetic mineralogy areapparent, whereas about 1800 years BP, a single sediment source began todominate the magnetic mineralogy. About 100–200 years ago, conditionsagain changed, probably due to clearcutting and settlement of the watershed.Topsoil erosion appears to have dominated the magnetic signal. S and Mnconcentration downcore indicate that there is little evidence for reductiondiagenesis having caused the changes observed in magnetic mineral type andconcentration, except in the top 10 centimeters of the sediment column.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.