Abstract

The hypothalamic suprachiasmatic nuclei (SCN) comprise the main site in the brain involved in the control of the homeostatic mechanism which respond to environmental daily light changes. The sympathetic nervous system and hypothalamic releasing or inhibiting factors mediate the SCN control of a number of peripheral organs and tissues. In this work we analyzed the involvement of two environmental light conditions, constant light (LL) and constant dark (DD) for 20 days, on the expression of mRNAs for catecholamines biosynthetic enzymes and neuropeptide Y (NPY) genes in rat superior cervical ganglia (SCG) and adrenal gland. The results of Northern blot analysis show that LL exposure reduces mRNA levels for tyrosine hydroxylase (TH) the rate limiting catecholamine biosynthetic enzyme and also of dopamine β-hydroxylase (DBH) as well as for NPY in SCG to about half the levels in control animals. In contrast, exposure of the rats to DD did not elicit any change in the SCG. In the adrenal gland, both, LL and DD conditions increased the TH, DBH as well as phenylethanolamine N-methyltransferase (PNMT) mRNA levels. Under the same conditions, adrenal NPY mRNA levels were decreased by either LL or DD. The results show, for the first time, that prolonged changes in environmental light can alter the gene expression of catecholamine biosynthetic enzymes and of NPY. There was differential response in SCG and adrenal gland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call