Abstract
Residential space heating is one of the major contributors to greenhouse gas (GHG) emissions and hence a priority sector to decarbonise in the transition to Net Zero target by 2050 in the UK. To assess environmental impacts of a current heating system and potential alternatives in the UK, this study conducted a comparative LCA of a condensing gas boiler and a hybrid heating pump for a common type of UK’s existing houses (a semi-detached house). The functional unit of this study is defined as delivering space heating for the whole lifetime (20 years) of heating system. The results suggest that the hybrid heat pump potentially saves 30% of GHG emissions as compared to the condensing gas boiler in the core scenarios (4.5E + 04 kg CO2-eq/FU vs 6.4 E + 04 kg CO2-eq/FU respectively). The hybrid heat pump also shows 13% to 48% emission reduction as compared to the condensing gas boiler in terrestrial acidification, photochemical oxidant formation, particulate matter formation and fossil depletion. However, the hybrid heat pump emits 3 to 6 times more emissions in terms of human toxicity, water depletion and metal depletion than the condensing gas boiler. The production phase contributes around 50% of the impact for metal depletion and human toxicity in both core scenarios, while the use phase dominates in other selected impact categories. The combustion of natural gas and the electricity production are the major causes for the dominance of the use phase for all selected impact categories excepting metal depletion and human toxicity. The sensitivity scenarios support the robustness of the results. Further work is needed to understand the role hybrid heat pumps can play in the residential sector decarbonisation under different scenarios of residential uptake, household behaviour and wider UK energy system decarbonisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.