Abstract

Palm biodiesel life cycle studies have been mainly performed for Asia and focused on greenhouse gas (GHG) intensity. The purpose of this article is to present an environmental life cycle assessment (LCA) of biodiesel produced in Portugal from palm oil (PO) imported from Colombia, addressing the direct effects of land-use change (LUC), different fertilization schemes, and biogas management options at the extraction mill. An LC inventory and model of PO biodiesel was implemented based on data collected in five Portuguese biodiesel plants and in a palm plantation and extraction mill in the Orinoquia Region of Colombia. The emissions due to carbon stock changes associated with LUC were calculated based on the Colombian oil palm area expansion from 1990 to 2010 and on historical data of vegetation cleared for planting new palm trees. Five impact categories were assessed based on ReCiPe and CML-IA methods: GHG intensity, freshwater and marine eutrophication, photochemical oxidant formation, terrestrial acidification. A sensitivity analysis of alternative allocation approaches was performed. Palm plantation was the LC phase which contributed the most to eutrophication and acidification impacts, whereas transportation and oil extraction contributed the most to photochemical oxidation. An increase in carbon stock due to LUC associated with the expansion of Colombian oil palm was calculated (palm is a perennial crop with higher carbon stock than most previous land-uses). The choice of the fertilization scheme that leads to the lowest environmental impacts is contradictory among various categories. The use of calcium ammonium nitrate (followed by ammonium sulfate) leads to the lowest acidification and eutrophication impacts. The highest GHG intensity was calculated for calcium ammonium nitrate, while the lowest was for ammonium sulfate and poultry manure. Biogas captured and flared at the oil extraction mill instead of being released into the atmosphere had the lowest impacts in all categories (GHG intensity reduced by more than 60 % when biogas is flared instead of released). Recommendation on the selection of the fertilization scheme depends on the environmental priority. ReCiPe and CML showed contradictory results for eutrophication and photochemical oxidation; however, uncertainty may impair strong recommendations. GHG intensity and photochemical oxidation impacts can be significantly reduced if biogas is flared instead of being released. However, more efficient biogas management should be implemented in order to reduce the impacts further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.