Abstract

Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is one of the most abundant antidepressants in municipal wastewater effluents (MWWE). The early life stages are particularly sensitive to contaminant exposure, but few studies have examined whether persistent exposure to venlafaxine impart adverse developmental outcomes. The fathead minnow (Pimephales promelas) is a widely used model for ecotoxicological studies, and this fish is native to Alberta, Canada. We tested the hypothesis that environmental levels of venlafaxine compromises early developmental behavioural performances in fathead minnows. Embryos were exposed to waterborne venlafaxine at either 0, 0.06, 0.33, 0.66, 1.37 or 3 μg L−1 concentration for 7 days. Environmental levels of venlafaxine did not impact the survival, hatch rate or heart rate of fathead minnow embryos and larvae but reduced the growth of larvae even at concentrations as low as 0.06 μg L−1. We validated thigmotaxis as a screen for anxiolytic and anxiogenic behaviour in fathead minnow larvae by exposing them to concentrations of ethanol and caffeine, respectively. Behavioural analyses revealed that early developmental exposure to venlafaxine does not alter thigmotaxis but reduced the activity of fathead minnows. The larval behavioural assays reported here for fathead minnow have the potential to be used as screening tools for the risk assessment of neurotoxic contaminants in MWWE. Overall, we demonstrate for the first time that exposure to environmental levels of venlafaxine during the critical early developmental window does not elicit an anxiogenic response but may adversely affect the larval growth performance of fathead minnows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call