Abstract

Abstract Virtually all aspects of our societal functioning—from food security to energy supply to healthcare—depend on the dynamics of environmental factors. Nevertheless, the social dimensions of weather and climate are noticeably less explored by the artificial intelligence community. By harnessing the strength of geometric deep learning (GDL), we aim to investigate the pressing societal question the potential disproportional impacts of air quality on COVID-19 clinical severity. To quantify air pollution levels, here we use aerosol optical depth (AOD) records that measure the reduction of the sunlight due to atmospheric haze, dust, and smoke. We also introduce unique and not yet broadly available NASA satellite records (NASAdat) on AOD, temperature, and relative humidity and discuss the utility of these new data for biosurveillance and climate justice applications, with a specific focus on COVID-19 in the states of Texas and Pennsylvania. The results indicate, in general, that the poorer air quality tends to be associated with higher rates for clinical severity and, in the case of Texas, that this phenomenon particularly stands out in Texan counties characterized by higher socioeconomic vulnerability. This, in turn, raises a concern of environmental injustice in these socioeconomically disadvantaged communities. Furthermore, given that one of NASA’s recent long-term commitments is to address such inequitable burden of environmental harm by expanding the use of Earth science data such as NASAdat, this project is one of the first steps toward developing a new platform integrating NASA’s satellite observations with deep learning (DL) tools for social good. Significance Statement By leveraging the strengths of modern deep learning models, particularly, graph neural networks to describe complex spatiotemporal dependencies and by introducing new NASA satellite records, this study aims to investigate the problem of potential environmental injustice associated with COVID-19 clinical severity and caused by disproportional impacts of poor air quality on disadvantaged socioeconomic populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call