Abstract

AbstractThe Atlantic bluefin tuna (Thunnus thynnus) population in the western Atlantic supports substantial commercial and recreational fisheries. Despite quota establishment and management under the auspices of the International Commission for the Conservation of Atlantic Tunas, only small increases in population growth have been estimated. In contrast to other western bluefin tuna fisheries indices, contemporary estimates of catch per unit effort (CPUE) in the southern Gulf of St. Lawrence have increased rapidly and are at record highs. This area is characterized by the Cold Intermediate Layer (CIL) that is defined by waters <3°C and located at depths of 30–40 m in September. We investigated the influence of several in situ environmental variables on the bluefin tuna fishery CPUE using delta‐lognormal modelling and relatively extensive and consistent oceanographic survey data, as well as dockside monitoring and mandatory logbook data associated with the fishery. Although there is considerable spatial and temporal variation of water mass characteristics, the amount of available habitat in the southern Gulf of St. Lawrence (assuming a > 3°C thermal ambit) for bluefin tuna has been increasing. The percentage of the water column occupied by the CIL was a significant environmental variable in the standardization of CPUE estimates. There was also a negative relationship between the spatial extents of the CIL and the fishery. Properties of the CIL account for variation in the bluefin tuna CPUE and may be a factor in determining the amount of available feeding habitat for bluefin tuna in the southern Gulf of St. Lawrence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call