Abstract

Soft gamma-ray repeaters (SGRs) and anomalous x-ray pulsars (AXPs) are young (<100 kyr), radio-quiet, x-ray pulsars which have been rapidly spun-down to slow spin periods clustered at 5-12 s. Nearly all of these unusual pulsars also appear to be associated with supernova shell remnants (SNRs) with typical ages <20 kyr. If the unusual properties of SGRs and AXPs were due to an innate feature, such as a superstrong magnetic field, then the pre-supernova environments of SGRs and AXPs should be typical of neutron star progenitors. This is not the case, however, as we demonstrate that the interstellar media which surrounded the SGR and AXP progenitors and their SNRs were unusually dense compared to the environments around most young radio pulsars and SNRs. Thus, if these SNR associations are real, the SGRs and AXPs can not be ``magnetars'', and we suggest instead that the environments surrounding SGRs and AXPs play a controlling role in their development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.