Abstract

Determining the habitat use of mobile marine species is important for understanding responses to climate change and aids the implementation of management and conservation measures. Inference of preferred habitat use has been greatly improved by combining satellite-based oceanographic data with animal tracking techniques. Although there have been several satellite-tracking studies on ocean sunfish Mola mola, limited information is available about either horizontal or vertical environmental preferences. In this study, both geographical movements and diving behaviour of ocean sunfish were explored together with the environmental factors influencing this species’ space use in the north-east Atlantic. Habitat selection of electronic-tagged sunfish (n = 22 individuals; 0.6–1.4 m total length, TL) was investigated using geolocations from Argos-linked and pop-up satellite archival transmitters. Satellite tracking (up to 171 days, mean 66 days) revealed seasonal movements: northward in spring–summer and southward in cooler months. Sunfish spent extended periods in three focal areas, the Gulf of Cadiz, north-east Iberia and the Alboran gyre, which are characterised by the presence of frontal features with elevated primary production. Habitat modelling revealed that sea surface temperature and thermal gradients significantly influenced sunfish distribution. Diving profiles, extending from the surface to a maximum depth of 704 m, revealed different depth-use patterns not linked to geographical region or water column stratification. Overall, a size-related movement pattern was detected with larger individuals (>0.92 m TL) travelling further, exploiting greater depth ranges and spending more time at depth than smaller fish. Ocean sunfish in the north-east Atlantic displayed seasonal movements, primarily driven by thermal preferences, extending into higher latitudes in summer. Moreover, fish also occupied productive frontal areas for long periods, presumably for improved foraging opportunities. Lastly, sunfish showed considerable variability in diving patterns which likely reflect the tracking of planktonic prey distributions.

Highlights

  • Determining the habitat use of mobile marine species is important for understanding responses to climate change and aids the implementation of management and conservation measures

  • Eight individuals were tracked with pop-off archival satellite transmitter (PSAT) tags able to store depth, temperature and light-level data, providing both horizontal and vertical profiles

  • To estimate the spatial inaccuracy of the unscented Kalman filter (UKFsst)-corrected tracks, both longitude and latitude standard deviations obtained from the parameterised geolocation errors were calculated for the pooled data [43]

Read more

Summary

Introduction

Determining the habitat use of mobile marine species is important for understanding responses to climate change and aids the implementation of management and conservation measures. Inference of preferred habitat use has been greatly improved by combining satellite-based oceanographic data with animal tracking techniques. There have been several satellite-tracking studies on ocean sunfish Mola mola, limited information is available about either horizontal or vertical environmental preferences. In this study, both geographical movements and diving behaviour of ocean sunfish were explored together with the environmental factors influencing this species’ space use in the north-east Atlantic. While movements are a measurable behavioural response to a combination of factors including internal states, physiological constraints and environmental variations [3], the description of important habitats relies on identifying the features underpinning species distributions [11]. The importance of these oceanographic features is likely due to improved foraging opportunities [19]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.