Abstract

Understanding characteristics of graphite-water interface is of scientific significance and practical importance. Ordered stripe structures have been observed at this interface, with their origins debated between condensed gas molecules and airborne hydrocarbons. Atomic force microscopy (AFM) studies have revealed variations in the morphology, formation and growth of these ordered structures. Here, we investigate the graphite-water interface under different environmental conditions using PeakForce Quantitative Nanomechanical (PF-QNM) AFM. Our findings reveal that stripe structures with 4 nm width and 0.5 nm periodicity, form and grow under wet laboratory conditions but not in pure inert gas or cleanroom environments. These stripes appear more readily when the graphite surface is immersed in water, with growth associated with gas nanodomains on the surface. This suggests that atmospheric contaminants migrate to the water-graphite interface, potentially facilitated by gas states. These findings underscore the impact of environmental conditions on graphitic materials, providing new insights into the mechanisms underlying stripe formation and growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.