Abstract

The lipid composition of bacterial membranes is pivotal in regulating bacterial physiology, pathogenicity, and interactions with hosts. This study presents a comprehensive analysis of bacterial membrane lipid profiles across diverse Gram-positive and Gram-negative species. Utilizing matrix-assisted laser desorption/ionization (MALDI) in conjunction with advanced chemometric tools, we investigate the influence of environmental factors, isolation sources, and host metabolism on bacterial lipid profiles. Our findings unveil significant variations in lipid composition attributed to factors such as carbon/energy availability and exposure to chemicals, including antibiotics. Moreover, we identify distinct lipidomic signatures associated with pathogenic and probiotic bacterial strains, shedding light on their functional properties and metabolic pathways. Notably, bacterial strains isolated from clinical samples exhibit unique lipid profiles influenced by host metabolic dysregulation, particularly evident in conditions such as diabetic foot infections. These results deepen our understanding of the intricate mechanisms governing bacterial membrane lipid biology and hold promise for informing the development of innovative therapeutic and biotechnological strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.