Abstract
Coralline algae form complex habitats which are biodiversity hotspots. Experimental studies suggest that climate change will decrease coralline algal structural integrity. These experiments, however, lack information on local morphological variability and how much structural change would be needed to threaten habitat formation. Here, using finite element modelling, we assess variability in cellular structure and chemical composition of the carbonate skeleton of four coralline algal species from Britain in contemporary and historical specimens collected over the last 130 years. Cellular and mineral properties are highly variable within species, between sites and through time, with structurally weaker cells in the southern species and contemporary material compared to northern taxa and historical material. Yet, temporal differences in strength were smaller than spatial differences. Our work supports long term experiments which show the adaptation potential of this group. Our results suggest that future anthropogenic climate change may lead to loss of habitat complexity in the south and expansion of structurally weaker southern species into northern sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.