Abstract

In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

Highlights

  • India relies heavily on crude oil imports, and this trend will continue due to the rapid growth of its economy and population

  • This study shows that the use of J. curcas methyl ester (JME) generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil fuels

  • The environmental impacts of the assessed J. curcas value chains show large variations, which are mainly caused by the difference in crop cultivation practices and are strongly dependent on the resource efficiency during crop cultivation

Read more

Summary

Introduction

India relies heavily on crude oil imports, and this trend will continue due to the rapid growth of its economy and population. In order to foster energy security, India’s strategy is to focus efforts toward energy self-reliance and developing renewable energy options. In this context, India proposed an indicative biofuel blending target of 20 percent for both bioethanol and biodiesel by 2017 (B20 target) [1]. Besides fostering India’s energy security and combating climate change, another main driver was to increase the productivity of the estimated 55 million hectares of marginal land in India [2] and provide additional employment to the vast rural population. Jatropha curcas L. was identified by the Indian government as one of the most suitable biodiesel feedstocks, since it is able to grow on marginal land and yields high-quality oil suitable for energetic use. India set an ambitious target of 11.2– 13.4 million hectares to be planted with J. curcas by 2012 [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call