Abstract

Since phosphorus (P) is a non-renewable element essential for life, it is extremely important to explore any potential supply of P, including that recovered from human excreta and urban wastewater. This study aimed to assess, using Life Cycle Assessment (LCA), whether recovering dissipated P by producing sludge-based phosphate fertilizer can be a suitable method to reduce P depletion. Environmental impacts of four scenarios of production of sludge-based phosphate fertilizers were compared to those of production of triple super phosphate, a mineral phosphate fertilizer used as a reference scenario. The novelty of this study was to estimate environmental impacts of sludge-based phosphate fertilizer production using a “product” LCA perspective instead of a “waste” LCA perspective. Consequently, upstream production of sludge was considered by allocating part of the environmental burdens of wastewater treatment to sludge production. Life Cycle Impact Assessment was performed using the CML-IA characterization method. Results indicated that sludge-based phosphate fertilizers appeared less environmentally friendly than mineral phosphate fertilizers, due to the contribution of the upstream burden of sludge production and P recovery. Finally, although P recovery helps preserve the mineral P resource, the overall assessment remains unfavorable for sludge-based products due to the low yields of P recovery, low P concentration of the sludge and the large amounts of energy and reactants needed to recover the P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.