Abstract
Agricultural industries are under increasing pressure to measure and reduce greenhouse gas emissions from the supply chain. The Australian pork industry has established proactive goals to improve greenhouse-gas (GHG) performance across the industry, but while productivity indicators are benchmarked by industry, similar data have not previously been collected to determine supply chain GHG emissions. To assess total GHG emissions from Australian pork production, the present study conducted a life-cycle assessment of six case study supply chains and the national herd for the year 2010. The study aimed to determine total GHG emissions and hotspots, and to determine the mitigation potential from alternative manure treatment systems. Two functional units were used: 1 kg of pork liveweight (LW) at the farm gate, and 1 kg of wholesale pork (chilled, bone-in) ready for packaging and distribution. Mean GHG emissions from the case study supply chains ranged from 2.1 to 4.5 kg CO2-e/kg LW (excluding land-use (LU) and direct land use-change (dLUC) emissions). Emissions were lowest from the piggeries that housed grower-finisher pigs on deep litter and highest from pigs housed in conventional systems with uncovered anaerobic effluent ponds. Mean contribution from methane from effluent treatment was 64% of total GHG at the conventional piggeries. Nitrous oxide arose from both grain production and manure management, comprising 7–33% of the total emissions. The GHG emissions for the national herd were 3.6 kg CO2-e/kg LW, with the largest determining factor on total emissions being the relative proportion of pigs managed with high or low emission manure management systems. Emissions from LU and dLUC sources ranged from 0.08 to 0.7 kg CO2-e/kg LW for the case study farms, with differences associated with the inclusion rate of imported soybean meal in the ration and feed-conversion ratio. GHG intensity (excluding LU, dLUC) from the national herd was 6.36 ± 1.03 kg CO2-e/kg wholesale pork, with the emission profile dominated by methane from manure management (50%), followed by feed production (27%) and then meat processing (8%). Inclusion of LU and dLUC emissions had a minor effect on the emission profile. Scenarios testing showed that biogas capture from anaerobic digestion with combined heat and power generation resulted in a 31–64% reduction in GHG emissions. Finishing pigs on deep litter as preferred to conventional housing resulted in 38% lower GHG emissions than conventional finishing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.