Abstract
PurposeThe gold routes satisfying the global gold supply are mining (74%), recycling of high-value gold (23%), and electronic scraps (3%). Besides its applications in the investment, jewelry, and industrial sector, gold also has a bad image. The gold production in industrial as well as artisanal and small-scale mines creates negative impacts such as resource depletion, extensive chemical use, toxic emissions, high energy consumption, and social concerns that are of great importance. On the other hand, almost all gold is recycled and has historically always been. In common life cycle assessment (LCA) databases, there is no data on recycling of high-value gold available. This article attempts to answer the question what the ecological benefits of this recycling are.MethodIn this study, we were able to collect process data on the most commonly used high-value gold scrap recycling process, the aqua regia method, from several state-of-the-art German refineries. With this data, life cycle inventories were created and a life cycle model was produced to finally generate life cycle impacts of high-value gold scrap recycling.ResultsThis study contains the corresponding inventories and thus enables other interested parties to use these processes for their own LCA studies. The results show that high-value gold scrap recycling has a considerably lower environmental impact than electronic gold scrap recycling and mining. For example, high-value gold scrap recycling in Germany results in a cumulative energy demand (CED) of 820 MJ and a global warming potential (GWP) of 53 kg-CO2-Eq. per kg gold. In comparison, common datasets indicate CED and GWP levels of nearly 8 GJ and 1 t-CO2-Eq. per kg gold, respectively, for electronic scrap recycling and levels of 240 GJ and 16 t-CO2-Eq. per kg gold, respectively, for mining.ConclusionThe results show that buying gold from precious metal recycling facilities with high technological standards and a reliable origin of the recycling material is about 300 times better than primary production.
Highlights
Gold is used in many different products, from luxury accessories and securely guarded bars to tiny amounts in electronic goods
It is well known that most precious metals have major environmental impacts since large pits or deep shafts must be dug in the ground to extract relatively small amounts of the desired metals
These processes were combined into one process by using allocations according to the ecoinvent system models v.3 and v.2 to bear exactly the same environmental impacts as the disaggregated processes
Summary
Gold is used in many different products, from luxury accessories and securely guarded bars to tiny amounts in electronic goods. The ore contents in gold mining range from only half a gram per ton of ore, for example, in the artisanal and small-scale mining (ASM) in Brazil to several tens of grams per ton of ore in the large industrial mines in Canada or Australia. Chemicals such as cyanide or mercury are used for extraction. Gold is almost perfectly recycled because of its
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Life Cycle Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.