Abstract

Concrete production is energy-intensive and has an adverse impact on the environment due to the raw materials involved. Currently, India has abundant reserves of fly ash and ground granulated blast furnace slag (GGBS). Despite various applications, fly ash often ends up in landfills. Given its abundance, there is a growing interest in utilising substantial quantities of fly ash in concrete production. In the current study, M30-grade concrete is designed with very high levels of fly ash and GGBS. Additionally, quick lime (QL) is incorporated as a supplementary agent to augment lime content. A total of twenty concrete mixes have been developed with different combinations of fly ash, GGBS, and QL. Results illustrate that the addition of QL does not show overall strength improvement to the GGBS-based mixes, but it impacts on fly ash-based mixes. The targeted design strength is achieved with 70% cement replacement with fly ash and QL. The strength development depends on the pozzolanic reaction initiated and the formation of hydration products in the system. The environmental impact of concrete is assessed by analysing its life cycle assessment using a cradle-to-gate approach. The energy requirement and kg-CO2 eq. emissions depend on the level of cement replacement. The fly ash-based concrete emits less kg-CO2 eq. and requires less energy than the GGBS-based mixes. Overall, the designed strength is achieved with 65% fly ash, requiring 59% less energy, reducing 54% CO2 footprint, 56% GWP100, 80% HTPinf, 46% ODPinf, and cost by 34% compared to OPC-based concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call