Abstract

In present paper, the blast-induced ground motion and its effect on the neighboring structures are analyzed at the limestone quarry "Drenovac" in central part of Serbia. Ground motion is examined by means of existing conventional predictors, with scaled distance as a main influential parameter, which gave satisfying prediction accuracy (R > 0.8), except in the case of Ambraseys–Hendron predictor. In the next step of the analysis, a feed-forward three-layer back-propagation neural network is developed, with three input units (total charge, maximum charge per delay and distance from explosive charge to monitoring point) and only one output unit (peak particle velocity). The network is tested for the cases with different number of hidden nodes. The obtained results indicate that the model with six hidden nodes gives reasonable predictive precision (R ≈ 0.9), but with much lower values of mean-squared error in comparison to conventional predictors. In order to predict the influence level to the neighboring buildings, recorded peak particle velocities and frequency values were evaluated according to United States Bureau of Mines, USSR standard, German DIN4150, Australian standard, Indian DMGS circular 7 and Chinese safety regulations for blasting. Using the best conventional predictor, the relationship between the allowable amount of explosive and distance from explosive charge is determined for every vibration standard. Furthermore, the effect of air-blast overpressure is analyzed according to domestic regulations, with construction of a blasting chart for the permissible amount of explosive as a function of distance, for the allowable value of air-blast overpressure (200 Pa). The performed analysis indicates only small number of recordings above the upper allowable limit according to DIN4150 and DMGS standard, while, for all other vibration codes the registered values of ground velocity are within the permissible limits. As for the air-blast overpressure, no damage is expected to occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call