Abstract

Decarbonization of university campuses by integrating scientific waste approaches and circular economy principles is the need-of-the-hour. Universities, the maximum energetic corporations and places for clinical studies and social activities, have a duty to assemble low-carbon campuses and play a vital function in lowering CO2 emissions. An environmental life cycle assessment was conducted to compare proposed municipal solid waste (MSW) treatment systems with the existing system in the residential university campus (RUC) in Kharagpur, West Bengal (India). The results show the existing MSW disposal practice in RUC (baseline scenario has the highest GWP (1388 kg CO2 eq), which can potentially be reduced by adopting integrated waste management system with source segregation as represented in futuristic scenarios (S2—50% sorting) and (S3—90% sorting)). Compared to S1, GHG emission was reduced by 50.9% in S2 and by 86.5% in S3. Adopting anaerobic digestion and engineered landfill without energy recovery offsets the environmental emissions and contributes to significant environmental benefits in terms of ecological footprints. Capital goods play a pivotal role in mitigation the environmental emissions. The shift towards S2 and S3 requires infrastructure for waste collection and sorting will contribute to reduction of associated environmental costs in the long-term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call