Abstract

An experimental sediment dumping was carried out in the southern part of the Mecklenburg Bight in June 2001. Foraminiferans and ostracods from superficial sandy sediment were studied in a time series from before dumping until March 2004 in order to assess changes in associations and recolonization patterns of both groups. Additionally, an area sampling covering the dumping site and its surroundings from 15.5 to 20.7 m water depth made it possible to compare associations inside and outside the dumping area as well as the water depth dependent distribution of foraminiferans and ostracods. Salinity values vary within the high alpha-mesohaline and low polyhaline range. The dominating species are Ammotium cassis (Foraminifera) and Sarsicytheridea bradii (Ostracoda). The diversity is low (Fisher alpha index from 0.4 to 3.2 for foraminiferans and 1.0 to 2.5 for ostracods), but higher within the dumping site samples. These higher values are explainable by input of allochthonous tests and valves representing additional species. After the sediment dumping it took two and a half years to re-establish the total foraminiferan association and the total foraminifer/ostracod ratio within the dumping site. Total foraminiferan abundance increases remarkably with water depth (mean 83 tests in 100 ml) driven by higher nutrient availability and more suitable salinity and temperature values within the zone of the oscillating halocline. The distribution of shallow water species such as Cribroelphidium excavatum, Eucythere argus and Hirschmannia viridis, within the transient water layer A. cassis, Nodulina dentaliniformis, S. bradii and Palmoconcha laevata and below Eggerella scabra indicate the depth position of the halocline. Water depth and sediment dumping influence are the main driving factors for the distribution of foraminifer and ostracod associations within the study area. However, a significant sedimentological difference between samples inside and outside the dumping area is not recognizable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call